Expression of voltage-gated potassium channels decreases cellular protein tyrosine phosphorylation.

نویسندگان

  • T C Holmes
  • K Berman
  • J E Swartz
  • D Dagan
  • I B Levitan
چکیده

Protein tyrosine phosphorylation by endogenous and expressed tyrosine kinases is reduced markedly by the expression of functional voltage-gated potassium (Kv) channels. The levels of tyrosine kinase protein and cellular protein substrates are unaffected, consistent with a reduction in tyrosine phosphorylation that results from inhibition of protein tyrosine kinase activity. The attenuation of protein tyrosine phosphorylation is correlated with the gating properties of expressed wild-type and mutant Kv channels. Furthermore, cellular protein tyrosine phosphorylation is reduced within minutes by acute treatment with the electrogenic potassium ionophore valinomycin. Because tyrosine phosphorylation in turn influences Kv channel activity, these results suggest that reciprocal modulatory interactions occur between Kv channel and protein tyrosine phosphorylation signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation-dependent and phosphorylation-independent modes of modulation of shaker family voltage-gated potassium channels by SRC family protein tyrosine kinases.

Modulation of voltage-gated potassium (Kv) channels by protein phosphorylation plays an essential role in the regulation of the membrane properties of cells. Protein-protein binding domains, such as Src homology 3 (SH3) domains, direct ion channel modulation by coupling the channels with intracellular signaling enzymes. The conventional view is that protein kinase binding to ion channels leads ...

متن کامل

Analysis and functional implications of phosphorylation of neuronal voltage-gated potassium channels.

Phosphorylation is the most common and abundant post-translational modification to eukaryotic proteins, regulating a plethora of dynamic cellular processes. Here, we review and discuss recent advances in our knowledge of the breadth and importance of reversible phosphorylation in regulating the expression, localization and function of mammalian neuronal voltage-gated potassium (Kv) channels, ke...

متن کامل

Trafficking-dependent phosphorylation of Kv1.2 regulates voltage-gated potassium channel cell surface expression.

Kv1.2 alpha-subunits are components of low-threshold, rapidly activating voltage-gated potassium (Kv) channels in mammalian neurons. Expression and localization of Kv channels is regulated by trafficking signals encoded in their primary structure. Kv1.2 is unique in lacking strong trafficking signals and in exhibiting dramatic cell-specific differences in trafficking, which is suggestive of con...

متن کامل

A mechanism for combinatorial regulation of electrical activity: Potassium channel subunits capable of functioning as Src homology 3-dependent adaptors.

It is an open question how ion channel subunits that lack protein-protein binding motifs become targeted and covalently modified by cellular signaling enzymes. Here, we show that Src-family protein tyrosine kinases (PTKs) bind to heteromultimeric Shaker-family voltage-gated potassium (Kv) channels by interactions between the Src homology 3 (SH3) domain and the proline-rich SH3 domain ligand seq...

متن کامل

Phosphorylation-dependent regulation of Kv2.1 Channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase epsilon.

Voltage-gated potassium (Kv) channels are a complex and heterogeneous family of proteins that play major roles in brain and cardiac excitability. Although Kv channels are activated by changes in cell membrane potential, tyrosine phosphorylation of channel subunits can modulate the extent of channel activation by depolarization. We have previously shown that dephosphorylation of Kv2.1 by the non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 23  شماره 

صفحات  -

تاریخ انتشار 1997